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2 Institute of Physics, Savanoriu̧ 231, LT-02300 Vilnius, Lithuania
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Abstract. By expanding the wave function in terms of the translationally invariant basis of harmonic
oscillator functions, we calculate the converging upper (variational) bound for the energy. It is shown
that one can construct lower bounds using the reduced density matrix that corresponds to the upper
bound. These lower bounds converge to an exact value with the expansion of the basis. We perform the
calculations of both bounds with realistic nucleon-nucleon potential for ground states of the triton and the
alpha-particle.
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1 Introduction

Matter is invariant with respect to translations in space,
therefore the wave functions of the self-bound systems
must be translationally invariant. However, the necessity
to ensure this invariance significantly complicates the de-
scription. As a result, the best-known methods for the de-
scription of quantum systems, such as the Shell Model or
the Hartree-Fock Self-Consistent Field method, produce
wave functions dependent on a set of one-particle vari-
ables, thus also on the center of the mass radius-vector of
the system. This shortage of mentioned methods is well-
known, however, the wave functions dependent on one-
particle variables are very attractive because they allow
a simple procedure of antisymmetrization. In some cases,
such as an atom, molecule or electron gas in solid state,
this approximation with the Hamiltonian and the wave
functions, both dependent on redundant variables, does
not produce any serious problems.

Nuclei, however, are essentially self-bound systems.
The translational invariance of the corresponding wave
functions appears to be a real problem. Moreover, having
in mind serious problems with nucleon-nucleon (NN) po-
tential definition requiring three-nucleon interactions, one
can summarize that the Schrödinger problem for atomic
nuclei is one of the most complicated tasks even for mod-
ern computers. The experience with solving such complex
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problems clearly demonstrates the value of the variational
method. It can be realized either by expanding the wave
functions in a complete basis or by constructing a phe-
nomenological ansatz, which is equipped with a sufficient
amount of variational parameters. The most attractive
point of the variational method is that any approximation
for the eigenvalue by definition is an upper bound, con-
verging to the exact value. Unfortunately, the method does
not give good enough criteria to estimate how far the ob-
tained value is from the exact one. The obvious advantage
of the variational method would be the possibility to deter-
mine together with the upper bound also the lower bound
for the energy. The possibility to determine both bounds
simultaneously as a result of the same calculation enables
one to estimate the interval for the exact energy value, i.e.
in some cases to solve the problem of bound state existence
or absence for some exotic systems and make decisions
concerning the quality of the obtained wave function.

As will be shown, both bounds for the energy can be
obtained while using the Reduced Hamiltonian formalism
for the translationally invariant wave-function of the self-
bound quantum system [1]. One ensures translational in-
variance for wave functions taking as arguments the set
of translationally invariant spatial variables, the so-called
Jacobian variables. As basics for our approach one uses
the well-known results that the essential dynamic part
of Hamiltonian for a system of identical particles is the
Reduced Hamiltonian (RH) operator [2], and that any
square-integrable wave function can be present in the basis
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of three-dimensional Harmonic Oscillator functions, en-
riched by the spin-isospin degrees of freedom and corre-
sponding functions.

2 Expansions in the Reduced Hamiltonian

basis

To obtain the mentioned bounds, one has to present the
intrinsic Hamiltonian of the self-bound system composed
of identical fermions as the sum

H =
A
∑

i>j=1

hi,j (1)

of the A(A − 1)/2 identical, but dependent on different
variables, two-particle operators

hi,j = −
~
2

2mA
(∇i −∇j)2 + V (ri − rj , σiσjτiτj) . (2)

For the atomic nucleus, m is the nucleon mass and
V (ri − rj , σiσjτiτj) is the potential of the nucleon-
nucleon (NN) interaction [3] depending, as usual, on the
difference ri − rj of the radius-vectors of the nucleons i
and j and on a set of spin and isospin degrees of free-
dom σi, σj , τi, and τj . Since the particles are identical
fermions, the Hamiltonian H is symmetric and the wave
function is antisymmetric with respect to the permuta-
tions of the particles. As a consequence, the expectation
values of different operators 〈hi,j〉 coincide, hence the ex-
pectation value of the total Hamiltonian can be expressed
in a very simple form:

〈H〉 = A(A− 1)

2
〈hA−1,A〉 ≡ 〈H〉 . (3)

Taking the last Jacobi coordinate as

ξA−1 = (rA−1 − rA) /
√
2 , (4)

one can present the operator H as

H =
A(A− 1)

2

[

− ~
2

mA
∇2
ξA−1

+ V
(√

2ξA−1, σiσjτiτj

)

]

.

(5)
Namely this operator is called the Reduced Hamilto-
nian (RH) operator. It describes the relative motion of
two nucleons therefore the solution of the corresponding
Schrödinger equation,

Hψνλµ (A− 1, A) = ενλψνλµ (A− 1, A) , (6)

is not more complicated than the Schrödinger problem
for the deuteron. Due to dependence of H on the mass
number the corresponding eigenvalues and eigenfunctions
all are functions of A.

For A = 2 this Hamiltonian describes the two-nucleon
system. The binding energy of the deuteron and the phase-
shifts of nucleon-nucleon scattering must be reproduced

while solving eq. (6) with the realistic nucleon-nucleon
(NN) potential. Here the set of exact quantum numbers for
two nucleons λ is the same as assignments for states of the
lightest atomic nuclei. It consists of angular momentum,
parity, isospin and isospin projection quantum numbers,
i.e. λ ≡ jπtmt. The last quantum number, i.e. the projec-
tion of isospin mt, is necessary for different two-nucleon
pairs (nn, np or pp) characterization, because recent real-
istic potentials are charge-dependent. For lightest atomic
nuclei with the same mass number A it labels the nuclei
of charge multiplets. The correspondence between our set
of quantum numbers jπt and spectroscopic identifiers of
two-nucleon channels is straightforward:

0+1 ∼1 S0, 0−1 ∼3 P0, 1+0 ∼3 S1 −3 D1, ... (7)

and so on. µ marks the quantum number of projections of
angular momentum j, ν is the number of the eigenvalues
with the same λ.

For two nucleons there exists only one bound state
of the RH in channel 1+0 —the deuteron. For A = 3,
all realistic potentials ensure the appearance of a bound
eigenvalue in the state 0+1. For larger values of mass num-
ber the bound eigenvalues of RH begin to appear also
in other channels, in which the phase shifts of nucleon-
nucleon scattering are positive or change sign. Some of
channels in which the phase shifts are negative remain
without bound states at any A. This phenomenon is ob-
served and described for the first time in [4].

The Shell Model Hamiltonian has an analogous, but
far simpler, structure. It equals a sum of commuting one-
particle operators hi, dependent on one-particle variables:

H0 =

A
∑

i=1

hi, (8)

where

hi = −
~
2

2m
∇i2 + U (riσiτi) . (9)

The arbitrary eigenvalue of this Hamiltonian can be writ-
ten as

〈H0〉 = A 〈hA〉 ≡ 〈H0〉 . (10)

The Schrödinger equation for this simple one-particle Re-
duced Hamiltonian is

H0φnljm (A) = ε
(0)
nljφnljm (A) , (11)

where nlj is a set of one-nucleon quantum numbers and
m is the projection of angular momentum quantum num-
ber. Due to the independence of one-particle variables the
eigenfunctions of the entire Hamiltonian

H0ΦNΓ0ΛM (1, 2, . . . , A− 1, A)

= E(0)
NΓ0Λ

ΦNΓ0ΛM (1, 2, . . . , A− 1, A) (12)

can be written in terms of a finite set, defined by config-
uration, of H0 eigenfunctions for individual nucleons:

ΦNΓ0ΛM (1, 2, . . . , A−1, A) =
∑

Γ̄0Λ̄0,nlj

〈

NΓ0Λ‖Γ̄0Λ̄0;nlj
〉

×
{

ΦΓ̄0Λ̄0
(1, 2, . . . , A− 1)⊗ φnlj (A)

}

ΛM
. (13)
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Here Λ marks the set of exact quantum numbers, Γ0 are
all the other quantum numbers (including configuration)
necessary for the definition of the state under consider-
ation, and N is the number of states with the same set
of quantum numbers Γ0Λ. Γ̄0 and Λ̄0 are the correspond-
ing quantum numbers attributed to the “spectator” func-
tions ΦΓ̄0Λ̄0

(1, 2, . . . , A− 1), dependent on variables of re-
maining (A− 1) particles. The functions appearing on the
right-hand side of eq. (13) are components of the wave
function. The components by definition are products of
antisymmetrized only in the first group of nucleons (spec-
tator) wave functions and the RH (actor) eigenfunctions.
They are equipped with the same set of exact quantum
numbers as the wave function of the system. The coeffi-
cients

〈

NΓ0Λ‖Γ̄0Λ̄0;nlj
〉

present in expression are the co-
efficients of fractional parentage, ensuring antisymmetry
of the wave function. Taking into account this expression
of the wave function, the eigenvalue of the total Hamilto-
nian equals

E(0)
NΓ0Λ

=
∑

nlj

ε
(0)
nlj

∑

Γ̄0Λ̄0

∣

∣

〈

NΓ0Λ‖Γ̄0Λ̄0;nlj
〉
∣

∣

2
. (14)

In brief this equation can be written as

E(0) =
∑

α

ε(0)α ω(0)α , (15)

where α marks the set nlj, ε
(0)
α denote the eigenvalue of

the H0 (εα ≤ εα+1) , and the coefficients ω
(0)
α are diagonal

entries of the one-particle reduced density matrix. They
satisfy the conditions

A
∑

α=1

ω(0)α = 1, and ω(0)
α ≥ 0, (16)

caused by normalization of the wave function and can be
called the probabilities of the corresponding one-particle
states.

To obtain an analogous expression for the eigenvalue of
the realistic Hamiltonian, one needs the above-introduced
Reduced Hamiltonian, eq. (5), describing the relative
movement of two nucleons, and the modified coefficients
of fractional parentage [1]. The main problem while re-
alizing this idea is the noncommutation of different op-
erators hi,j , present in the translationally invariant ex-
pression of the total intrinsic Hamiltonian. Consequently,
the RH and the total Hamiltonian cannot have common
eigenfunctions, hence none of the eigenfunctions of the
total Hamiltonian can be expressed as the product of Re-
duced Hamiltonian eigenfunctions, as in the Shell Model
approximation. The minimal approximation like the one
in the Shell Model, does not exist. However, the basis of
the RH eigenfunctions is complete, hence any wave func-
tion of the self-bound system can be expanded in terms
of the basis of eigenfunctions of the operator H. Let us
define the above-mentioned expansion of the translation-
ally invariant wave function Ψ in terms of eigenfunctions

of RH as follows:

ΨEΓΛM (1, 2, . . . , A− 1, A) =
∑

Γ̄ Λ̄,νλ

〈

EΓΛ‖Γ̄ Λ̄; νλ
〉

×
{

ΦΓ̄ Λ̄ (1, 2, . . . , A− 2)⊗ ψνλ (A− 1, A)
}

ΛM
. (17)

Here E denotes an eigenvalue of the Hamiltonian H of the
system, Λ is the set of exact quantum numbers, Γ are all
other quantum numbers necessary for the definition of the
state under consideration. Γ̄ and Λ̄ are the quantum num-
bers attributed to the “spectator” functions, dependent on
all the remaining variables except those appearing in the
expression of the RH, eq. (5). Any square-integrable func-
tions of the same set of variables, forming an orthonor-
malyzed basis, can be taken as the basis of “spectator”
functions. The functions appearing in curly brackets on
the right-hand side of eq. (17) are components of the wave
function. They are unantisymmetrized products of the RH
eigenfunctions and the “spectator” wave functions with
coupled angular momenta and equipped with the same
set of exact quantum numbers as the wave function of the
system. The coefficients

〈

EΓΛ‖Γ̄ Λ̄; νλ
〉

present in this ex-
pression for the wave function are the generalized coeffi-
cients of fractional parentage for the translationally in-
variant function, defined in [1] as entries of the matrix
of the spectral decomposition of antisymmetrizer matrix,
present in components basis.

By using this expansion one easily obtains that the
eigenvalue E of the total Hamiltonian of the system can
be expressed as:

E =
∑

νλ

ενλ
∑

Γ̄ Λ̄

∣

∣

〈

EΓΛ‖Γ̄ Λ̄; νλ
〉
∣

∣

2
. (18)

In brief this equation can be rewritten as

E =
∑

γ

εγωγ , (19)

where γ = 1, 2, ... marks the set of quantum numbers
νλ, and εγ denote the eigenvalue of the RH operator
(εγ ≤ εγ+1) . The coefficients ωγ , satisfying the conditions

∑

γ

ωγ = 1, and ωγ ≥ 0, (20)

caused by normalization of the wave function, are diagonal
elements of the reduced density matrix and can be called
the probabilities of corresponding RH states.

Obvious is the complete analogy of both expressions
for the eigenvalues —the first given in eq. (15), and the
second present in eq. (19). The calculations of the RH
eigenvalues in both cases are not more complicated than
the solution of the Schrödinger equation for the deuteron.
However, while the first expression is for the eigenvalue
of the model Hamiltonian, the second one gives a simple
expression for the eigenvalue of the intrinsic Hamiltonian
of the atomic nucleus with the realistic potential of the
NN interaction.
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Table 1. The dependence of the upper bounds Eup for the
triton and the alpha-particle ground-state energy on a total
number of oscillator quanta E. E = ∞ corresponds to the
exact value. This value for triton (−7.63 MeV) is from [5], for
the alpha-particle (−24.56 MeV) from [6].

3H 4He

E Eup E Eup

22 −6.38 0 626.82

24 −6.76 2 233.63

26 −7.00 4 93.81

28 −7.20 6 33.70

30 −7.32 8 6.36

32 −7.41 10 −5.77

34 −7.47 12 −13.82

36 −7.52 14 −18.08

38 −7.55 16 −20.84

40 −7.58 ∞ −24.56

42 −7.59

44 −7.60

∞ −7.63

3 The bounds for energies

As has been shown, the probabilities of the RH states
are diagonal entries of the reduced density matrix.
Formerly it was believed, that this density matrix can
serve as the main mathematical tool for the description
of the A-fermion system because the many-particle wave
function tells us more than we need to know. The main
task while solving this problem was the formulation of
the conditions such a matrix has to fulfill to be derivable
from a wave function of the A-particle system. This
problem, called the problem of N -representability of
the density matrix, is introduced and formulated in
the classical works [7]. However, direct construction
of acceptable approximations for the reduced density
matrix, avoiding the wave function calculation cannot
be realized. The only known way is the solution of the
Schrödinger equation with the following reconstruction
of the probabilities distribution using the obtained wave-
function. Obviously, any distribution of probabilities,
violating the N -representability of the density matrix,
as will be shown later, cannot give an acceptable result.
Obvious is only that, for the non antisymmetric wave
function, the expectation value of the Hamiltonian always
gives the lower bound for the corresponding eigenvalue.

The best known lower bound is the so-called Hall-Post
bound [8]. It is obtained by concentrating all the probabil-
ity on the lowest state of the RH (i.e., taking ωα = δα,1).
Obviously, this distribution of probabilities corresponds to
one component, therefore cannot be created by the anti-
symmetric wave function. As a result, the corresponding
estimate for the energy is very inaccurate. Some improve-

ment of this bound can be obtained by taking into account
minimal requirements for the density matrix (i.e. proba-
bilities), caused by antisymmetry of the wave function [4],
but the lower bound anyway stays far from the exact value.

A set of N -representable density matrices can be con-
structed by applying the basis of translationally invariant
three-dimensional harmonic oscillator functions in the ex-
pansion for the components of the wave function. This
basis can be antisymmetrized in finite subspaces of the
Hilbert space, corresponding to the given total number
of oscillator quanta E, because such a set of functions
forms the complete set for the antisymmetrization opera-
tor. Therefore, at any given number of oscillator quanta E
the N -representable density matrix can be found, thus the
probabilities ωα (E), that depend on the maximal number
of oscillator quanta E, can be defined. As mentioned, these
probabilities correspond to the situation, when all many-
particle basic functions whose number of oscillator quanta
ranges from Emin (minimal value of oscillator quanta, al-
lowed by the Pauli principle) to E are summed up. Due to
the condition for parity of the state under consideration

π = (−1)E , allowed values of the oscillator quanta are of
the same parity. Obviously, the eigenvalues of the RH also
depend on E because this parameter defines the dimen-
sion of the basis for the RH matrix diagonalization [9].
Finally, the eigenvalue of the total Hamiltonian H is

Eup (E) =

N(E)
∑

α=1

εα (E)ωα (E) . (21)

HereN(E) is the total number of RH states, present in the
expansion. Increasing the number E enlarges the basis for
the total Hamiltonian matrix, giving the mentioned vari-
ational result, converging to the exact value from above,
i.e.:

Eup (E)− Eup (E + 2) > 0 and lim
E→∞

Eup (E) = E .
(22)

In table 1, we present these upper bounds for the triton
and for the alpha-particle as functions of the total number
of oscillator quanta E, obtained while using the Reid93
NN potential [10]. In table 1 also are given the values of
precise calculations for the ground-states energies of both
nuclei.

By applying eq. (21) the convergence condition eq. (22)
can be rewritten as

N(E)
∑

α=1

[εα (E)− εα (E + 2)]ωα (E)

+

N(E)
∑

α=1

εα (E + 2) [ωα (E)− ωα (E + 2)] >

N(E+2)
∑

α=N(E)+1

εα (E + 2)ωα (E + 2) . (23)

In the asymptotic region, i.e. for large values of E, this
condition can be easily understood and simplified taking
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into account the well-known result, that perturbations of
the wave functions are of the second order in comparison
with the ones for the eigenvalues εα(E). Consequently,
the perturbations of the density matrix are even smaller.
Thus, the second sum on the left-hand side of the inequal-
ity, eq. (23), can be neglected:

N(E)
∑

α=1

[εα (E)− εα (E + 2)]ωα (E) >

N(E+2)
∑

α=N(E)+1

εα (E + 2)ωα (E + 2) . (24)

The sums on both sides are positive, because all prob-
abilities are nonnegative and the eigenvalues of the RH,
in complete accordance with the behavior of the eigenval-
ues of the total Hamiltonian, can only decrease when the
harmonic oscillator basis increases, i.e.

εα (E) > εα (E + 2) . (25)

As mentioned above, a very limited number of bound
states is characteristic of realistic NN potentials, so all
εα (E + 2) with α > N(E) at large enough E are positive.
Equation (24) illustrates the statement that changes in
the eigenvalues of the RH (i.e. in εα (E)) are large enough,
while the probabilities of states corresponding to the ex-
pansion tail (α > N(E)), present on the right-hand side
of the inequality, are small.

As already mentioned, a high-quality lower bound can
be obtained when using the N -representable density ma-
trix. The only such construction one has is the density
matrix obtained while calculating the upper bound. So,
let us apply the following expression for the lower bound:

Elw (E) =

N(E)
∑

α=1

eα (E)ωα (E) (26)

and consider which eα (E) values can be used for the def-
inition of these bounds.

Let us summarize the requirements for the lower
bounds:

1. Firstly, the lower bound must produce a value for
the energy, lower than the value produced by the upper
bound at any number of oscillator quanta E, i.e. Elw(E) ≤
Eup(E).

2. Secondly, both bounds at growing E must converge
to the same value of energy, i.e. Elw(E) → Eup(E) for
E →∞.

3. Thirdly, the condition

Elw (E) < Elw (E + 2) , (27)

require the convergence of the lower bound to the exact
value from below.

To satisfy the first and the second condition it is nec-
essary to take

eα (E) ≤ εα (E) (28)

at all values of α and ensure the condition eα (E)→ εα (E)
for E →∞.

The third condition for the lower bound (27), which
can be simplified by neglecting small sums (like simplify-
ing above the conditions for the upper bound), for a given
set of eα (E), can be expressed as

N(E)
∑

α=1

[eα(E + 2)− eα(E)]ωα(E + 2)

+

N(E+2)
∑

α=N(E)+1

eα(E + 2)ωα(E + 2) > 0 . (29)

It is evident that the sums in this inequality have differ-
ent signs: the first sum is negative and the second positive.
Therefore, in some cases this requirement cannot be sat-
isfied.

Let us consider possible alternatives for the definition
of eα (E) .

The first one, satisfying all the three mentioned condi-
tions, is based on eα (E) as a priori calculated eigenvalues
of the RH at some fixed large value of the oscillator quanta
E0 À E. The definition for this lower bound (the bound
of the first kind) is

E(1)lw (E) =

N(E)
∑

α=1

εα(E0)ωα(E). (30)

Obviously, at E = E0 this lower bound equals the upper
bound. The condition for the lower bound, eq. (27) re-
quiring the convergence of bound to the exact value from
below, can be simplified and presented as

N(E)
∑

α=1

εα(E0) [ωα(E + 2)− ωα(E)]

+

N(E+2)
∑

α=N(E)+1

εα(E0)ωα(E + 2) > 0 . (31)

The first sum here is of an unspecified sign but very small,
while the second sum is always positive, hence this con-
dition can be satisfied. In present calculations we choose
E0 equal to 50, 100 and 200. For single NN channels,
such as 1S0,

3P0,
1P1, etc., the order of the corresponding

matrix of the RH operator equals 26, 51 and 101, cor-
respondingly, while for bound channels, such as 3SD1,
3PF2, etc., the order of the RH operator matrix equals
51, 101 and 201. For triton the lower bound, correspond-
ing to E0 = 200 converges to the value which corresponds
to the diagonalization of a total Hamiltonian matrix of
order 106, while for the alpha-particle the order of the
corresponding Hamiltonian matrix equals 1010. It is evi-
dent that matrices of such dimensions, hardly attainable
even for modern computers, can give the binding energy
close enough to the exact one. The results obtained for
the mentioned systems are presented in fig. 1.

For comparison, the Hall-Post bound EHP = ε1
for triton equals −48.11 MeV and for the alpha-
particle −185.68 MeV. The above-mentioned modified
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Fig. 1. The dependence of the lower bounds of first kind

E
(1)
lw (E) for the triton and the alpha-particle on the total num-

ber of oscillator quanta E.

bound EHPM = (ε1 + ε2) /2 give slightly better values
−26.98 MeV and −110.96 MeV, respectively. Obviously,
all these values for bounds are far from exact energies,
hence other alternatives should be searched for.

As one can study from information, present in fig. 1,
the lower is the dimension of the RH matrix (E0) , the bet-
ter is the value of the lower bound. Let us exploit this idea
to generate bounds of the second kind taking as eigenval-
ues of RH the eigenvalues of the maximal order matrix at
a given number of oscillator quanta only in two nucleon
channels with bound states present, i.e.:

eνλ (E) = ενλ (E0) , when ε1λ < 0 ,

eνλ (E) = ενλ (E) , othervise . (32)

The lower bounds E (2)lw (E), obtained in this case in the
convergence region, are better than bounds of the first
kind. They are given in table 2.

The last alternative (the bounds of third kind) cor-
responds to a situation when all positive eigenvalues of
the RH are taken the same as in the upper-bound expres-
sions, while the eigenvalues of the bound states are taken
by solving exactly an appropriate Schrödinger equation,

Table 2. The dependence of the lower bounds E
(2)
lw of the sec-

ond kind for the triton and the alpha-particle on the total
number of oscillator quanta E.

3H 4He

E E
(2)
lw E E

(2)
lw

28 −9.19 12 −38.98

32 −9.08 16 −37.81

36 −8.94

40 −8.82

44 −8.71

Table 3. The dependence of the lower bounds E
(3)
lw of third

kind for the triton and the alpha-particle on the total number
of oscillator quanta E.

3H 4He

E E
(3)
lw E E

(3)
lw

28 −7.82 12 −25.114

32 −7.75 16 −25.106

36 −7.72

40 −7.7198

44 −7.7174

i.e. when

e1λ (E) = ε1λ , when ε1λ < 0 ,

eβ (E) = εβ (E) , when εβ (E) > 0 . (33)

Now the expression for the lower bound is

E(3)lw (E) =

k
∑

α=1

εαωα(E) +

N(E)
∑

α=k+1

εα(E)ωα(E) , (34)

where k is the number of negative eigenvalues of the RH.
The results obtained by applying this approximation to
the triton and to the alpha-particle in the convergence
region are presented in table 3. Obviously, they are the
best we can present.

4 Summary

Summarizing, one can conclude that the introduced lower
bounds significantly differs from all the lower bounds
known earlier.

Firstly, in any approximation, operating with functions
of one-particle variables, such as the Shell-Model basis, the
construction of these lower bounds is very problematic due
to the unavoidable for these calculations transformation
from the one-particle density matrix to the reduced two-
particle density matrix. The translationally invariant basis
is ideal for these bounds definition.

Secondly, all bounds introduced are easily obtainable
after the same variational calculation at any dimension of
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the basis taken into account. The values for the bounds,
converging with the growing dimension of the basis to the
same value of energy, define the region, where this “exact”
value is situated. This can be useful when solving problems
of stability of some exotic systems.

Thirdly, the wave function, associated with every
one of the obtained lower bounds is the same, as the
variational wave-function for the upper bound, because
the density matrices are the same in both cases. The
Hall-Post bounds and their known modifications do not
have any associated function. In other words, the intro-
duced lower bounds correspond to some “effective inter-
action”, based on the initial bare interaction but with a
large basis for Reduced Hamiltonian functions taken into
account, hence with some additional dynamic correlations
included.
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2. G.P. Kamuntavičius, Few-Body Syst. 1, 91 (1986).
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